Things Customers Don’t Understand About Search

Note, this post is based on a dev forum put together by Chris.

Full-text search is a common feature of systems 67 Bricks build. We want to make it easy for users to find relevant information quickly often through a faceted search function. Understanding user needs and building a top notch user experience is vital. When building faceted search, we generally use either ElasticSearch (or AWS’s OpenSearch) or MarkLogic. Both databases offer very similar feature sets when it comes to search, though one is more targetted towards JSON based documents and the other, XML.

Search can seem magical at first glance and do some amazing things but this can lead to situations where customers (and UX/UI designers) assume the search mecahnism can do more than it can. We frequently find a disconnect between what is desired and what is feasable with search systems.

There are 2 main categories of problems we often see are:

  1. Customers / Designers asking for things that could be done, but often come with nasty performance implications
  2. Features that seem reasonable to ask for at first glance, but once dug into reveal logical problems that make developing the feature near impossible

Faceted Search

Faceted search systems are some of the most common systems we build at 67 Bricks. The user experience typicallly starts with a search box that they enter a number of terms into, hit enter and then be presented with a list of results in some kind of relevancy order. Often there is a count of results displayed alongside a pagination mechanism to iterate through the results (e.g. showing results 1-10 of 12,464). We also show facets, counts for how many results fit into different buckets. All this is handled in a single query that often takes less than 100ms which seems miraculous. Of course, this isn’t magic, full-text search systems use a variety of clever indexes to make searching and computing the facet counts quick.

Lets make a search system for a hypothetical website cottagesearch.com. Our first screen will present the user with some options to select a location, the date range they want to stay and how many guests are coming. We perform the search and show the matching results. How should we display the results and more importantly, how do we show the facets?

Let’s say we did a search for 2 bedroom cottages. We’ve seen wireframes for a number of occassions where the facet count for all bedroom numbers are displayed. So users see the number of results applicable to each bedroom count they would get if they didn’t limit the search to just 2 bedrooms (i.e. there aren’t that many 2 bed options, but look at how many 3 bed options are available). At first glance, this seems like a sensible design, but fundmanetally breaks how search systems work with faceting, they will return counts, but only for the search just done.

We could get around this by doing 2 searches, 1 limited by bedrooms and one that does not to retrieve the facet counts. This may seem like a sensible idea when we have 1 facet, but what do we do when we have more? Do we need to do multiple searches, effectively making an N+1 problem? How to we display numbers? Should the counts for the location facet include the limit of bedrooms or not? As soon as we start exploring additional situations we start to see the challenges the original design presents.

This gets harder when we consider non-exclusionary facets. Let’s say our cottage search system lets you filter by particular features, such as a wood burner, hot tub or dishwasher. Now, if we show counts of non-selected facets, what do these numbers represent? Do they include results that already include the selected facet or not? Here, the logic starts to break down and becomes ever more confusing to the end user and difficult to implement for the developer.

Other Complex Facet Situations

A common question we need to ask with non-exclusionary facets: Is it an AND or an OR search? The answer is very domain dependant, but either way we suggest steering away from facets counts in these situations.

Date ranges provide an interesting problem, some sites will purposefully search outside of the selected range so as to provide results near the selected date range. This may be a useful or annoying depending on what the user expects and is trying to achieve. Some users would want exact matches and would have no interest in results that do not meet the selected date range.

Ordering facets is also a questions that may be overlooked. Do you order lexographically or do you order by descending number of matches? What about names, year ranges or numeric values? Again, a lot of what users expect and would want comes down to the domain being dealt with and the needs of the users.

When users select a new facet, what should the UI do? Should the search immediately rerun and the results and facets update or should there be a manual refresh button the user has to select before the search is updated? An immediate refresh would be slower, but let users narrow down carefully, while a manual update would reduce the number of searches done, but then users may be able to select a number of facets in such a way that no results would be returned.

Hierarchies can also prove tricky. We often see taxonomies being used to inform facets, say subjects with sub categories. How should these be displayed? Again there are many solutions to pick from with different sets of trade-offs.

Advanced Search

Advanced search can often be a bit like a peacocks tail – something that looks impressive, but doesn’t contribute a fair share of value based on how much effort it takes to develop. A lot of designers and product owners love the idea of it but in practice, it can end up being somewhat confusing to use and many end users end up avoiding it.

Boolean builders exist in many systems where the designer of advanced search will insist on allowing users to build up some complex search with lots of boolean AND/OR options, but displaying this to users in a way they can understand is challenging. If a user builds a boolean search such as: GDP AND Argentina OR Brazil do we treat it as (GDP AND Argentina) OR Brazil or should it be interpreted as GDP AND (Argentina OR Brazil). We could include brackets in the builder, but this just further complicates the UI.

We frequently get bugs and feedback on advanced search, some of this feedback can amount to different users having contradictory opinions on how it should work. We would ask product owners to carefully consider “How many people will use it?” Google has a well build UI for advanced search that does away with the challenges of boolean logic by having separate fields for ANDs ORs and NOTs.

Google advanced search UI

An advanced search facility can introduce additional complexity when combined with facets. If an advances search lets you select some facets before completing the search, does this form part of the string in the search box? We have had mixed results with enabling power users to enter facets into search fields (e.g. bedrooms:3), but this can be tricky, some users can deal with it, but others may prefer a advanced search builder while others will rely on facets post search.

Summary

In conclusion, we have 3 main takeaways

  • Search is much more complex than it first appears
  • Facets are not magic, just because you can draw a nice wireframe doesn’t make it feasable to develop
  • Advanced search can be tricky to get right and even then, only used by a minority of users

We’ve build many different types of search and have experimented with a number of approaches in the past and we offer some tried and tested principles:

  • Make searches stateless – Don’t add complexity by trying to maintain state between facets changes, simply treat each change as a fresh search. That way URLs can act as a method of persistence and bookmarking common searches.
  • Have facets only display counts for the current search and do not display counts for other facets once one has been selected within that category.
  • Only use relevancy as the default ordering mechanism – You may be tempted to allow results to be ordered in different ways, such as published date, but this can cause problems with weakly matching, but recent results appearing first.
  • Don’t build an advanced search unless you really need to and if you have to, use a Google style interface over a boolean query builder.
  • Check that search is working as expected – Have domain experts check that searches are returning sensible results and look into using analytics to see if users are having a happy journey through the application (i.e. run a search and then find the right result within the first few hits).
  • Beware of exhaustive search use cases – As many search mechanisms work on some score based on relevancy to the terms entered, having a search that guarantees a return of everything relevant can be tricky to define and to develop.

In praise of functional programming

At 67 Bricks, we are big proponents of functional programming. We believe that projects which use it are easier to write, understand and maintain. Scala is one of the most common languages we make use of and we see more object oriented languages like C# are often written with a functional perspective.

This isn’t to say that functional languages are inherently better than any other paradigms. Like any language, it’s perfectly possible to use it poorly and produce something unmaintainable and unreadable.

Immutable First

At first glance immutable programming would be a challenging limitation. Not being able to update the value of a variable is restrictive but that very restriction is what makes functional code easier to understand. Personally I found this to be one of the hardest concepts to wrap my head around when I first started functional programming. How can I write code if I can’t change the value of variables?

In practice, reading code was made much easier as once a value was assigned, it never changed, no matter how long the function was or what was done with the value. No more trying to keep track in my head how a long method changes a specific variable and all the ways it may not thanks to various control flows.

For example, when we pass a list into a method, we know that the reference to the list won’t be able to change, but the values within the list could. We would hope that the function was named something sensible, perhaps with some documentation that makes it clear what it will do to our list but we can never be too sure. The only way to know exactly what is happening is to dive into that method and check for ourselves which then adds to the cognitive load of understanding the code. With a more functional programming language, we know that our list cannot be changed because it is an immutable data structure with an immutable reference to it.

High Level Constructs

Functional code can often be more readable than object oriented code thanks to the various higher level functions and constructs like pattern matching. Naturally readability of code is very dependent on the programmer; it’s easy to make unreadable code in any language, but in the right hands these higher level constructs make the intended logic easier to understand and change. For example, here are 2 examples of code using regular expressions in Scala and C#:

def getFriendlyTime(string time): String = {
  val timestampRegex = "([0-9]{2}):([0-9]{2}):([0-9]{2}).([0-9]{3})".r
  time match {
    case timestampRegex(hour, minutes, _, _) => s"It's $minutes minutes after $hour"
    case _ => "We don't know"
  }
}
public static String GetFriendlyTime(String time) {
  var timestampRegex = new Regex("([0-9]{2}):([0-9]{2}):([0-9]{2}).([0-9]{3})");
  var match = timestampRegex.Match(time);
  if (match == null) {
    return "We don't know";
  } else {
    var hours = match.Groups[2].Value;
    var minutes = match.Groups[1].Value;
    return $"It's {minutes} minutes after {hour}";
  }
}

I would argue that the pattern matching of Scala really helps to create clear, concise code. As time goes on features from functional languages like pattern matching keep appearing in less functional ones like C#. A more Java based example would be the streams library, inspired by approaches found in functional programming.

This isn’t always the case, there are some situations where say a simple for loop is easier to understand than a complex fold operation. Luckily, Scala is a hybrid language, providing access to object oriented and procedural styles of programming that can be used when the situation calls for it. This flexibility helps programmers pick the style that best suits the problem at hand to make understandable and maintainable codebases.

Pure Functions and Composition

Pure functions are easier to test than impure functions. If it’s simply a case of calling a method with some arguments and always getting back the same answer, tests are going to be reliable and repeatable. If a method is part of a class which maintains lots of complex internal state, then testing is going to be unavoidably more complex and fragile. Worse is when the class requires lots of dependencies to be passed into it, these may need to be mocked or stubbed which can then lead to even more fragile tests.

Scala and other functional languages encourage developers to write small pure functions and then compose them together in larger more complex functions. This helps to minimise the amount of internal state we make use of and makes automated testing that much easier. With side effect causing code pushed to the edges (such as database access, client code to call other services etc.), it’s much easier to change how they are implemented (say if we wanted to change the type of database or change how a service call is made) making evolution of the code easier.

For example, take some possible Play controller code:

def updateUsername(id: int, name: string) = action {
  val someUser = userRepo.get(id)
  someUser match {
    case Some(user) =>
      user.updateName(name) match {
        case Some(updatedUser) =>     
         userRepo.save(updatedUser)
         bus.emit(updatedUser.events)
         Ok()
        None => BadRequest()
    case None => NotFound()
}

def updateEmail(id: int, email: string) = action {
  val someUser = userRepo.get(id)
  someUser match {
    case Some(user) =>
      user.updateEmail(email) match {
        case Some(updatedUser) =>
          userRepo.save(updatedUser)
          bus.emit(updatedUser.events)
          Ok()
        case None => BadRequest()
    case None => NotFound()
}

Using composition, the common elements can be extracted and we can make a more dense method by removing duplication.

def updateUsername(id: int, name: string) = action {
  updateEntityAndSave(userRepo)(id)(_.updateName(name))
}

def updateEmail(id: int, email: string) = action {
  updateEntityAndSave(userRepo)(id)(_.updateEmail(email))
  }
}

private def updateEntityAndSave(repo: Repo[T])(id: int)(f: T => Option[T]): Result = {
  repo.get(id) match {
    case Some(entity) =>
      f(entity) match {
        case Some(updatedEntity) =>
         repo.save(updatedEntity)
         bus.emit(updatedEntity.events)
         Ok()
        None => BadRequest()
    case None => NotFound()
}

None Not Null

Dubbed the billion-dollar mistake by Tony Hoare, nulls can be a source of great nuisance for programmers. Null Pointer Exceptions are all too often encountered and confusion reigns over whether null is a valid value or not. In some situations a null value may never happen and need not be worried about while in others it’s a perfectly valid value that has to be considered. In many OOP languages, there is no way of knowing if an object we get back from a method can be null or not without either jumping into said method or relying on documentation that often drifts or does not exist.

Functional languages avoid these problems simply by not having null (often Unit is used to represent a method that doesn’t return anything). In situations where we may want it, Scala provides the helpful Option type. This makes it explicit to the reader that you call this method, you will get back Some value or None. Even C# is now introducing features like Nullable Reference Types to help reduce the possible harm of null.

Scala also goes a step further, providing an Either construct which can contain a success (Right) of failure (Left) value. These can be chained together to using a railway styles of programming. This chaining approach can lead us to have an easily readable description of what’s happening and push all our error handling to the end, rather than sprinkle it among the code.

Using Option can also improve readability when interacting with Java code. For example, a method returning null can be pumped through an Option and combined with a match statement to lead to a neater result.

Option(someNullReturningMethod()) match {
  case Some(result) =>
    // do something
  case None =>
    // method returned null. Bad method!
}

Conclusions

There are many reasons to prefer functional approaches to programming. Even in less functionally orientated languages I have found myself reaching for functional constructs to arrange my code. I think it’s something all software developers should try learning and applying in their code.

Naturally, not every developer enjoys FP, it is not a silver bullet that will overcome all our challenges. Even within 67 Bricks we have differing opinions on which parts of functional programming are useful and which are not (scala implicits can be quite divisive). It’s ultimately just another tool in our expansive toolkit that helps us to craft correct, readable, flexible and functioning software.