
Orchestration
Ansible and more!

Summary of Orchestration
Puppet Chef Ansible Salt Stack

Pros ● Ruby
● Push and Pull Based
● Mature
● Support for Windows

and Linux

● Ruby or yaml
● Pull Based
● Mature
● Support for Windows

and Linux
● Very large toolset, e.g.

Kitchen
● Extensible with Ruby

● Agentless, everything
over SSH

● Good integration with
cloud services

● Simple CLI
● Simple yml based files
● Extensible with Python

● Geared towards
scalability and speed

● Simple configuration
files

Cons ● Steep learning curve
● Requires agent on

machine (for pull)
● More geared towards

ops teams
● Not as easy to extend

as others

● Steep learning curve
● Requires agent on

machine

● Windows cannot be
control machine

● Somethings can be a
little more complex than
they should be

● Not fantastic windows
support

● Requires agents on
machines

● More of a curve than
Ansible, but less than
Chef / Puppet

More on Ansible
● Terminology:

○ Hosts are servers
○ Playbooks describe all steps needed and which hosts to affect
○ Plays describe individual sets of related tasks
○ Tasks are a separate step to do something
○ Roles are playbooks that other playbooks can call

● Hosts can be classified together (say by client, product and server role)
● Playbooks will identify servers to affect and describe the steps to follow
● Steps are followed linearly in playbook, but describe target states, each step

will work out what commands it needs to run to complete

Simple to Run ad-hoc
ansible all -m ping

ansible-playbook deploy.yml

- name: Ensure server dependencies are correct
hosts: tag_Name_nen_c_proto_server
gather_facts: True
remote_user: ubuntu
become: yes
become_user: root
become_method: sudo

Install / Deploy
- name: install dependencies
 apt: name={{item}}
 with_items:
 - openjdk-8-jdk
 - elasticsearch
 - git
 - postgresql-9.4
 - nginx

- name: copy elasticsearch config
 copy: src=files/elasticsearch/elasticsearch.yml dest=/etc/elasticsearch/elasticsearch.yml
 notify: restart elasticsearch

handlers:
 - name: restart nginx
 service: name=nginx state=restarted

 - name: restart elasticsearch
 service: name=elasticsearch state=restarted

- name: stop website service
 service: name=nen-connect-proto state=stopped

Provisioning an EC2 Instance
 - name: Provision EC2 Server

local_action:
 module: ec2
 key_name: ansible-vm
 group_id: sg-xxxxxx
 instance_type: t2.micro
 image: "{{ ec2_image }}"
 region: "{{ ec2_region }}"
 vpc_subnet_id: "{{ ec2_subnet_id }}"
 instance_tags: '{"Name":"{{ ec2_tag_Name }}","Type":"{{ ec2_tag_Type}}","Environment":"{{ ec2_tag_Environment
}}","Client":"{{ ec2_tag_Client }}"}'
 assign_public_ip: yes
 wait: true
 count: 1
 volumes:
 - device_name: /dev/xvda
 device_type: gp2
 volume_size: "{{ ec2_volume_size }}"
 delete_on_termination: true

register: ec2

Provisioning an EC2 Instance (cont)
 - add_host: name={{ item.public_ip }}
 groups=tag_Type_{{ec2_tag_Type}},tag_Environment_{{ec2_tag_Environment}},tag_Client_
{{ec2_tag_Client}}
 ec2_region={{ec2_region}}
 ec2_tag_Name={{ec2_tag_Name}}
 ec2_tag_Type={{ec2_tag_Type}}
 ec2_tag_Environment={{ec2_tag_Environment}}
 ec2_ip_address={{item.public_ip}}

with_items: "{{ec2.instances}}"

 - name: Wait for instances to boot by checking ssh
wait_for: host={{ item.private_ip }} port=22 delay=60 timeout=320 state=started
with_items: "{{ec2.instances}}"

Provisioning an EC2 Instance (cont)

Best Cases to Use
● Multiple servers (say server farm)

○ Parallel deployments on many machines that must be the same
○ Can control parallelism, so only some servers are down during deployments

● Multiple deployment environments
○ Additional arguments can be passed in through the command line

● Lots of dependencies to manage
○ Have to truly understand what needs to be deployed on a server for an application to work
○ Self documenting too thanks to the friendly YML syntax

● Deploying similar things multiple times
○ Ansible Galaxy helps with providing reusable roles

Problems
Some modules require additional installs on the host being controlled which you
have to manually handle (postgres_db)

Amazon Linux doesn’t work very well

Some task types are OS dependant (apt vs yum)

Ansible Galaxy has some useful, but sometimes questionably designed roles

